Este géminis nacido el 17 de junio de 1898 en Leeuwarden, Holanda destacó por la matematicidad de su cerebro transformado en grabados en madera y piedra así como por sus dibujos a media tinta. Jugó con la perspectiva como nadie antes lo había hecho. Su genio creativo está emparentado con aquel de J.S. Bach y el lógico Kurt Gödel en el libro de Douglas Hofstadter, Gödel, Escher y Bach: un eterno y grácil bucle.
La xilografía que aquí se presenta se titula "Metamorfosis II", la cual se tardó cuatro meses en terminar, es una de sus obras que más me agrada. Siempre me han gustado las cosas armónicas y simétricas. Todo aquello que es igual pero distinto y que al mismo tiempo guarda una distancia proporcional me subleva. En el arte, además, me fascinan los juegos matemáticos. Uno de mis compositores que tengo en gran estima es el ya citado J.S. Bach. Sus partituras son un ejemplo de amalgamas melódicas, armónicas y matemáticas. Se ha comentado que la música de Bach podría traducirse mediante fórmulas de Cálculo. No entiendo bien cómo podría ser, pero la sola idea me genera una emoción indescriptible. A pesar de haber estudiado filosofía, como la mayoría de la gente piensa, las matemáticas son mi otra pasión intelectual. Pero mejor regresemos al arte.
En la xilografía mostrada se puede percibir la simetría, el juego matemático con la realidad al transformar nuestra percepción en cada cuadro. Debo advertir que el original no está cortado como éste, sino que forma parte continua de un mural. Al verlo de corrido se puede notar la genialidad de la obra. Si le dan clic al título de esta entrada podrán ir a una página donde verán esta obra como lo explico.
Analicen la estructura de la obra. Inicio-Primera parte-Segunda parte-Epílogo-Fin. Así la interpreto. Inicia con la palabra metamorphose y de allí continúa jugando con la misma palabra hasta que aparece un tablero de ajedrez (nótese la búsqueda por lo lógico) donde a mi parecer comienza la Primera parte, cuando los cuadros negros y blancos comienzan a transformarse en lagartijas y, con un cambio de tina (la verde), la lagartija se hace lagarto y éste a su vez en hexágonos, los cuales a su vez se convierten en un panal. Ahora comienza lo que considero es la Segunda parte. De este panal salen volando abejas, mismas que se transforman, primero en avispas y luego en mariposas. Entre las mariposas comienzan a salir peces en sincronía con la difuminación de las mariposas. Transcurren unas tres hileras de peces hasta que aparece una paloma. A lo lejos se nota cómo un pájaro acompañará a la paloma en su viaje, al cual se le unirá una tercer ave parecida a una golondrina. Aquí es donde considero que comienza el Epílogo, el cual se muestra aprovechando la tinta anaranjada con la que introdujo al pájaro para elaborar cuadros de diferentes formas, los cuales representan los techos de las casas de una ciudad, misma que tiene una torre de vigilancia, la cual descansa sobre los cuadrados verdes que vuelven a simular un tablero de ajedrez, el cual muta su color verde por el negro y de esta forma, con la pieza del rey en la esquina se comienza el retroceso hacia la palabra metamorphose donde la xilografía llega a su Fin.
Hay muchas otras obras de Escher y eso lo utilizaré de pretexto para platicar más de este grabadista que combinó arte y ciencia en un mismo elemento. ¿Quién dice que el arte carece de lógica?
5 comentarios:
De que tiene lógica, la tiene. Ahora bien, cuando obligan a uno a pintar una lámina de Escher llamada "los pajaros" deja de ser divertido el apreciar la perspectiva y lógica de los dibujos
Lo bieno de estas obras es que te puedes pasar un buen rato mirando y mirando sin pensar en nada.
Gracias por tu visita.
Y a tu pregunta, respondo que depende. Hala, ahí queda eso!
Jaime: me imagino que no debió haber sido muy satisfactorio y sí muy frustrante, sobre todo si como uno, no es diestro en el dibujo.
Interrogación: así, horas viéndolo, gozándolo, analizándolo. Te visitaré más.
Saludos,
Mi cavernoso amigo, a mí me gusta mucho el trabajo de Escher, aunque no sé si lo considero un artista. Tampoco le he dado demasiadas vueltas. Celebro tu explicación de la Metamorfósis, y me aclara algunas cosas.
Ahora bien, de lo que estoy seguro es que el arte y la ciencia siguen dos caminos separados y, me atrevo a decir, inconexos. Recuerda que Kant, ese filósofo que puso a Platón en su sitio, explica que no puede haber demostración de las obras de arte. De otro modo, podría concluirse la belleza, por poner un ejemplo. Pero ésta es sólo intuible.
Rodricus: Mi imperativo amigo, tienes toda la razón al afirmar que no puede haber una demostración de las obras de arte. Me parece, sin embargo, que de allí no se sigue que carezcan de lógica entendida ésta como la racionalidad que está impresa en algunas obras de arte, como es el caso de la de Escher, la de Bach o alguna que te agrade no sólo estéticamente, sino también por sus juegos matemáticos implícitos.
La belleza no es demostrable...aunque debería serlo. Me da gusto que hayas entrado a dialogar a este espacio.
Saludos,
Publicar un comentario